Detecting Clusters in Spatially Repetitive Point Event Data Sets
نویسنده
چکیده
The analysis of point event patterns has a long tradition. Of particular interest are patterns of clustering or ‘hot spots’ and such cluster detection lies at the heart of spatial data mining. Certain classes of point event patterns have a significant proportion of the data having a tendency towards exact spatial repetitiveness. Examples are crime and traffic accidents. Spatial superimposition of point events challenges many existing approaches to cluster detection. In this paper a variable resolution approach, Geo-ProZones, is applied to residential burglary data exhibiting a high level of repeat victimisation. This is coupled with robust normalisation as a means of consistently defining and visualising the ‘hot spots’. Key-words : spatial clustering, point event data, spatial repetition, Geo-ProZone analysis, robust normalisation Résumé : L’analyse des événements ponctuels a une longue tradition. La recherche de concentrations dans les semis d'évènements ponctuels ont un intérêt particulier, et la détection de ces concentrations est au cœur du data mining spatial. Certains modèles d'événements ponctuels ont une proportion significative des données ayant une tendance vers la répétition spatiale exacte. Comme exemples on peu citer des crimes et des accidents de trafic. La superposition spatiale des événements ponctuels rend problématique beaucoup d'approches existantes pour détecter ces concentrations. Dans cet article une approche de résolution variable, des Geo-ProZones, est appliquée aux données de Cybergeo : Revue européenne de géographie, N° 387, 11 juillet 2007 2 cambriolage de residences montrant un niveau élevé de répétition spatiale. Ceci est couplé avec la normalisation robuste comme moyen de définir et de visualiser uniformément les concentrations. Mots clés : analyse spatiale de proximité, événement ponctuel, répétition spatiale, analyses Geo-ProZone, normalisation robuste
منابع مشابه
Cluster Detection in Point Event Data having Tendency Towards Spatially Repetitive Events
The analysis of point event patterns in geography, ecology and epidemiology have a long tradition (e.g. Snow, 1855; Clark & Evans, 1954; Harvey, 1966; Mantel, 1967; Cliff & Ord, 1981). The patterns detected are usually broadly classified as random, uniform or clustered. Whilst spatial randomness has traditionally been assumed to have no underlying process of interest, Phillips (1999) has pointe...
متن کاملImprovement of density-based clustering algorithm using modifying the density definitions and input parameter
Clustering is one of the main tasks in data mining, which means grouping similar samples. In general, there is a wide variety of clustering algorithms. One of these categories is density-based clustering. Various algorithms have been proposed for this method; one of the most widely used algorithms called DBSCAN. DBSCAN can identify clusters of different shapes in the dataset and automatically i...
متن کاملDetecting Changes in Twitter Streams using Temporal Clusters of Hashtags
Detecting events from social media data has important applications in public security, political issues, and public health. Many studies have focused on detecting specific or unspecific events from Twitter streams. However, not much attention has been paid to detecting changes, and their impact, in online conversations related to an event. We propose methods for detecting such changes, using cl...
متن کاملLong signal change-point detection
The detection of change-points in a spatially or time ordered data sequence is an important problem in many fields such as genetics and finance. We derive the asymptotic distribution of a statistic recently suggested for detecting change-points. Simulation of its estimated limit distribution leads to a new and computationally efficient change-point detection algorithm, which can be used on very...
متن کاملBayesian Melding of Deterministic Models and Kriging for Analysis of Spatially Dependent Data
The link between geographic information systems and decision making approach own the invention and development of spatial data melding method. These methods combine different data sets, to achieve better results. In this paper, the Bayesian melding method for combining the measurements and outputs of deterministic models and kriging are considered. Then the ozone data in Tehran city are analyze...
متن کامل